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Sedimentation profiles of systems with reentrant melting behavior

J. Dzubiella¥ H. M. Harreis, C. N. Likos, and H. lwen
Institut fir Theoretische Physik Il, Heinrich-Heine-Univergitausseldorf, Universitsstrale 1, D-40225 Bseldorf, Germany
(Received 26 January 2001; published 20 June 2001

We examine sedimentation density profiles of star polymer solutions as an example of colloidal systems in
sedimentation equilibrium that exhibit reentrant melting in their bulk phase diagram. Phase transitions between
a fluid and a fluid with an intercalated solid are observed below a critical gravitational strehgtBharac-
teristics of the two fluid-solid interfaces in the density profiles occurring in Monte Carlo simulations for
a<a* are in agreement with scaling laws put forth in the framework of a phenomenological theory. Further-
more, we detect density oscillations at the fluid-gas interface at high altitudes for high-gravitational fields,
which are verified with density-functional theory and should be observable in surface scattering experiments.
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[. INTRODUCTION loidal suspensions are phase transitions such as wéftig
surface melting11], as well as dynamical effects as shock-
Colloidal particles in a suspension under gravitational in-like fronts[12], metastable phase formatifh3], long-range
fluence show spatial inhomogeneities due to the symmetryelocity correlations[14], stratification [15], and crystal
breaking induced by the gravitational field. The problem ofgrowth[16].
sedimentation of particles in the presence of gravity has long While the equilibrium sedimentation of hard-sphere sus-
been of scientific interest. The simplest approximation is théensions is well understod®,4,5,17,18 charged suspen-
one of noninteracting particles, valid in the limit of dilute sions are much more subtle as they reveal an apparent mass
solutions. This approach leads to an exponential sediment#hat is smaller than the bare mass at least for intermediate
tion density profile, which was observed by Perrin for a cal-heights[4,19-21. In this paper, we study a third kind of
culation of Boltzmann’s constant in 1970]. Taking into  effective interaction between colloids, namely a very soft
account particle interactions at higher concentrations wilicore as realized for star polymer solutid2?]. The qualita-
yield corrections to the exponential density profile. For verytive new feature of those solutions as compared to the tradi-
small gravitational strength, a local-density approximationtional hard-sphere and Yukawa interactions is that their
(LDA) of density-functional theoryDFT) is justified[2,3].  phase diagram exhibits r@entrant melting behaviofor in-
In this case, there is a one-to-one correspondence betwegreasing densitj23]. In fact, our analysis holds for any sys-
the sedimentation density profile and the isothermal equatiofem with a reentrant melting behavior, but we will mainly
of state. This fact was exploited to extract the hard-spheréocus explicitly on star polymers. Star polymers consist of
equation of state experimentally by investigating stericallylinear polymer arms attached to a central common core. The
stabilized colloids[4]. Furthermore, within the LDA, a complete bulk phase diagram for star polymers in a good
change in the height corresponds to a local change of the solvent was calculated in RdR23] and exhibits several un-
chemical potentiak of the bulk system. This implies that, in usual solid lattices as well as reentrant melting. As will be
the limit of small gravity, the phase behavior becomes visdiscussed in detail in the following sections, due to the reen-
ible as a function of height, a feature that has also been trant melting behavior, unusual density profiles, featuring in-
exploited to estimate the hard-sphere freezing transfgn  teresting effects, arise and a wealth of scaling laws can be
Surprisingly, comparison with Monte CarlC) simula-  established.
tions show that the LDA is even reliable for relatively strong ~ The paper is organized as follows: In Sec. Il, results of
inhomogeneities or gravitational strengfla. This was fur- ~computer simulations of a system of star polymers, interact-
ther confirmed by comparing LDA against the exactlying by means of an ultrasoft pair potentia#] are presented.
soluble hard rod model in one spatial dimension. While then Sec. lll, we present a phenomenological theory giving an
LDA yields a monotonic decaying density profilgz), a  account of the sedimentation profiles observed in the com-
layering shows up near the hard wall of the container bottomputer simulations. Scaling laws are put forth. Also in Sec. Il
Even crystallization can be induced by the bottom f&]l ~ density-functional theory in a simplified hybrid weighted
As shown recently6], details of this surface-induced crys- density approximatiotHWDA) is used to reproduce density
tallization may be significantly influenced by a periodic wall 0scillations at the fluid-gas interface found in the simulation
pattern. Indeed, pure colloidal crystals can be grown fronflata. Concluding remarks are contained in Sec. IV.
sedimentation on a patterned substfate9). In this case, the
gravitational field acts as an external force enforcing and
accelerating heterogenous nucleation and growth. Other fas-
cinating phenomena in a gravitational field relevant for col- We performed canonical MC computer simulations keep-
ing particle numbem, volumeV, and temperaturd con-
stant. We used a simulation box with squared periodic
*Email address: joachim@thphy.uni-duesseldorf.de boundary conditions ix,y direction and semi-infinite geom-

II. COMPUTER SIMULATION
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etry in z direction where the particles were confined only by -1
the gravitational field foz>0. The bottom wall az=0 was f M, £)  fluid f
hard and interacting with the star polymers by means of an 003 o -4 34
effective star polymer-wall potential that is derived from the 40
effective star polymer hard-sphere interaction in the limit of 0.02 48
a sphere with zero curvature. The calculation was performed ’ 6
in Ref.[25]. It is of the following form:
0.01 96
BVeu(2)=AF3?
o z<0 000 -
2z\ (472 o
o oo 21 -] 2 | o
o o? 2 2 FIG. 1. Bulk phase diagram of star polymers interacting with
_ _ otential(2), calculated in Ref[23]. Arm numbeif is plotted versus
c2(1-erl(2«2))/[1~erf(xo)] else. gacking fractionn. The squares indicate the phasepboundaries; solid
(1) lines are a guide to the eye. The black cross denotes the point with

. . critical arm numberf.~34 and corresponding density.~0.43.
With z we denote the distance from the center of one stafne system is always fluid for arm numbers smaller than the critical

polymer to the surface of the flat walir defines the so-  arm numberf, and shows reentrant melting behavior for arm num-
called corona diameter of a star polymer, which is related tgersf <f<54. The arrow indicates a path through the phase dia-
its diameter of gyrationory through 0=0.660y, see Ref. gram that is equivalent with a change in the altiturieithin the
[25]. The constants areA=0.24, k0=0.84, ¢&=1/(1  LDA. The four observed solid phases are body-centered cubic
+2k20?), &= mé ko expPad)[1—erf(ko)], and the (bco, face-centered cubi¢fcc), body-centered orthogondbco),
inverse thermal energy=1/kgT. We emphasize that the and diamonddiam,).

range of the star-wall interaction is of the order of one or two

corona diameters, so that the behavior of the sedimentatiofiynamic variabler, giving the number density per unit sur-
profiles for larger distances is not influenced. The star polyface. The density profile(z) is normalized as

mer pair potential is ultrasoft and is described by the follow-

ing equation24J: T:j p(2)dz. 3)
0
r 1
5 —In P 14-—\/?/2 r<o T is the number of particles piled up over the argaof
BV{r)= 1_8f3/2 the bottom wall. Typical system sizes welke=2000 par-

ticles and the Monte Carlo runs were extended oM@
~500 000 cycles, each cycle comprising one trial move for
®) each of theN particles. Besides the aforementioned thermo-
dynamic variabler, two further parameters characterize the
with center-to-center distance Both interactions are purely state of the system: First, the arm numbef the star poly-
entropic, hence they scale linearly with temperature. Previmers, being the number of polymer chains grafted on the
ous work[23] showed that a system of star polymers inter-central core. Second, the dimensionless gravitational strength
acting by means of the potentié?) possess a very rich and (or Peclet number
interesting bulk phase diagram, see Fig. 1, exhibiting reen-
trant melting and reentrant freezing transitions for arm num- mgao (4)
bersf.<f=<54, with the critical arm numbefr,.=34. As we ~ kgT'’
will discuss in more detail below, it is the reentrant melting
that makes this type of system appropriate for the analysighich describes the ratio of the potential energy gain to the
presented in this article. The suspending liquid is assumed tdermal energkgT for a particle of massn, displaced by
be incompressible. Furthermore, we treat the solvent to b# height in an external field with acceleratign The three
continuous, neglecting possible effects of the discreteness glarameterd, =, and o« were varied over a broad range of
the solvent particles. Given the size of the colloidal particlesvalues. The particles were moved by employing the standard
under observation, the star polymers, this is a reasonabletropolis algorithm.
assumption. In the simulation, the initial configuration of the In Fig. 2, we show results for different gravitational
system was chosen to be a body-centered ofiuig solid to  strengthsa, while 70°=48.87 andf =39 are fixed. Thef
facilitate equilibration. Its lattice constaatwas determined =39 star polymer system displays reentrant melting in the
from a bulk system with a packing fractiop=m/6pc>  fluid—bcc—fluid sequence, as seen along the arrow in Fig.
=0.5 lying in the bce regime in the bulk phase diagram, sedl. The gravitational field forces the local densityp(z) to
Fig. 1. The lateral box dimensions were chosen to be multake values that scan the range frerfp(z)=0 up to high
tiples of the lattice constart The total number of particles values, o3p(z)=3. Thus, the local density “crosses
was then fixed by prescribing a certain value of the thermothrough” the range of the phase diagram where the system

else,

alr % \/?( )
———exg — 5—(r—
1+ i1 20 7
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guished. At some heigliz=25¢ in (a)] the density rapidly
decays to zero. At this strong inhomogeneity, oscillations in
density with wavelengtto- can be distinguished in the sedi-
mentation profile, which is smooth elsewhere in the linear
regime. The linear dependence of the density profilezon
can be understood in terms of a local-density functional
mean-field theory, as will be shown in Sec. Ill A; the corre-
sponding results from this theory are shown in Figs) and
2(b) with dotted lines. The density oscillations observed in
the simulations were reproducible in the framework of
density-functional theory using a simplified form of the
HWDA, as will be discussed in further detail in Sec. Il C.

By lowering the gravitational strengi further, a critical
strengtha™ in the range 168 «* <17.0 is discovered. Be-
low o*, the density profiles qualitatively change and exhibit
a new feature. Strong density oscillations appear, a clear in-
dication for a crystalline phase. They extend over 10 to 20
star diameters, equivalent to several crystalline layers. The
length of the crystal grows, ag decreases. A typical simu-
lation snapshot is shown in Fig. 3 next to the corresponding
equilibrium density profile. Here, the well-ordered crystal
phase in the middle of the simulation box (28z=<300) is
clearly visible.

As an additional check for crystalline order, we calculate
the local-order-paramete¥ , that checks for fourfold sym-

' ' ' ' ' '(e) metry in two dimensions around a given particle. It is defined
L2 8 by
3
l ] 1 & gli¢
jk
5 | V4(2)= <4N|,E % > : (5)
2 @ where thek sum includes the four nearest neighbors of the
\HHI M ‘ “H“HM ] given particle and th¢ sum extends oveN, particles in the
1 H ‘ ”\ ”” ! Hl corresponding layer. A layer is defined by a slab of thickness
0 l ' —\ N ~ 6=0.2 a, centered around the given patrticle at elevatipn
] 10 20 30 40 50 60 which is motivated by the “Lindemann melting rule,” as-
7o suming a maximum particle displacement of approximately

10% around the equilibrium position in a possible crystal
regime. The angular brackets indicate a canonical ensemble
average.¢ji is the polar angle of the interparticle distance
vector with respect to a fixed reference frame. For ideal four-

order paramete, is also showr(dashed ling using the same fold symrEetry, i.e., for a parucle_contamed in a bcc-solid
scale as the profiles. I@ and(b), a straight line whose equation is layer, W,=1. Due to thermal motion, small defects of the

derived within the LDA[see Eq(12)] is superimposed on the plots Perfect crystalline symmetry arise and usually value¥gf -
(dotted ling. >0.8[6] are taken to be conclusive evidence for a crystalline

phase with fourfold-in-layer-symmetry. As can be seen in

displays a bulk bcc phase. It it intuitively expected that theFigs. 2c)—2(f), our simulation data do indeed show values
system will then feature a solid reginff@r intermediate den- up to¥,~0.95 in the region of the density profifgz) that
sitieg intercalated between two fluid regimes, at low andwe already identified to be solid due to the pronounced den-
high densities. We have found that this is indeed what hapsity oscillations.
pens butprovided that the gravitational strength doe®mt Comparing the interval of the packing fraction in which
exceed a critical value*, as we discuss below. crystallization occurs to the bulk phase diagram in Fig. 1, we

Let us start from the case where no solid phase appeargiay thus conclude that the intercalated solid regime is a
For o> o™ [Figs. 4a) and 2b)], we obtain density profiles manifestation of the reentrant melting in the bulk phase dia-
p(2) that show three distinct features: First, there is layeringgram, mapped onto theaxis in a system under gravitational
on the wall due to packing effects, typically extending overinfluence. The absence of freezing for strong gravitational
several layers. Az increases, a fluid regime with density fields (@>a*) can now be at least qualitatively understood:
decaying as a linear function of altitudecan be distin- for high values ofe, the density profiles grow too fast as

FIG. 2. Sedimentation profiles of star polymers for an arm num-
berf=239 and a densityo?=48.87. The gravitational strengthis
decreased from@a) to (f) with (a) «a=30.0, (b) «=17.0, (¢) «
=16.0,(d) «=8.0,(e) «=6.0, and(f) a=4.0. In plots(c)—(f) the

011405-3



J. DZUBIELLA, H. M. HARREIS, C. N. LIKOS, AND H. LOVEN PHYSICAL REVIEW E64 011405

Ill. THEORY

A. Density-functional theory in local-density
approximation (LDA)

In order to predict scaling relations characterizing crystal-
lization in sedimentation profiles of star polymer solution,
we apply density-functional theory within the framework of
the local-density approximatiofLDA). The latter is a reli-
able theoretical tool in cases where the density profile of the
system varies slowly witlz, so that it can be considered as
staying essentially constant at length scales set by the micro-
scopic natural length of the systenr {n this casgé As can
be seen in Figs.(2) and 2b), this is indeed the case if we
discard the strong oscillations close to the w#ile layering
effec). As the range of these oscillations is much shorter
than the range of the density profile itself, the bulk of the free
energy of the system resides in the smooth “ramplike” part
of the density profile and the use of the LDA is justified.
Accordingly, we will omit the star-wall potential from our
considerations in this subsection and consider only the ef-
fects of the external gravitational fietli,,(z) =mgz

We work in the grand canonical ensemble and introduce
the chemical potentigk and a variational grand potential per
unit areax (T, u;[ p(2)]) which is a functional of the density
profile. Introducing the ideal and excess per unit area contri-
butions to the intrinsic Helmholtz free energy of the system,
Fidlp(2)] and Fe{p(2)], respectively, we find that in the
LDA, the expression fol (T, u;[ p(z)]) reads as

S(T,m[p(2])=Fid p(2)]+Felp(2)]

+ [ devei@p@)- [ dznia)

—kT [tz (2 Infp(2N %11

N fomdz[f<p<z>>+(mgz—u)p(z)],
®

where A =h%27mkgT is the thermal de Broglie wave-
length andf(p(z)) is the Helmholtz free energy per unit
volume of the bulk fluid. The minimization & with respect
to p(2) yields the equilibrium profiley(z); the value of the
functional at equilibrium3 (T, «,[ po(2)]) is then the grand
canonical free energy per unit aréa(T,u) of the system.

FIG. 3. _Snapsh_o_t f_rom MC _'simulat_io(light) shown with the Setting5E(T,,u,[p(z)])/5p(z)|p (z):0 in Eq. (6), leads to
corresponding equilibrium density profileeft). The star polymers 0

are rendered as spheres with diameterThe parameters ard:
=39, @=5.0, 702=42.1. KeTIn[po(2)a®]+f'[po(2)]=p' —mgz, (7)

approaches the wall, so that the mapping onto zhexis  where f’(x) denotes the derivative of(x) and u'=pu
results into a domain that is too narrow to sustain crystalline-3 In(\/o) is a shifted chemical potential.

order. In fact, as we will show in detail in Sec. IlIB, a  Due to the ultrasoft character of the logarithmic-Yukawa
minimal, nonvanishing thickness of the crystalline layer isstar-star interactioV¢{r), the star polymer system belongs
necessary so that the latter can be stably “nested” betweeto the class ofmean-field fluid§26—30, for which the ex-
the two fluid phases. cess free energy density is a quadratic functiop,afamely:
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z (> Vsd0)p? -
f(p)g%mTJO drrZVSS(r)::‘“{T)p, ®) ,BUZE(T,,u)=—6'(;—B. (13)

Accordingly, the Helmholtz free energy per unit area,

with the Fourier transforrﬁ/sgk) of the pair potential. This 2 = 5 — .
F(T,7)=B0°2(T,u)+ u7 obeys the scaling law

property is valid for high-density fluids provided their pair Bo
potential V(r) is only slowly diverging at the origin and _ 9
decays fast enough to zero las>», so that it is integrable. Bo?F(T,7)= 5\/2aB7'3/2. (14)
For the more restrictive case of a nondiverging potential at

r=0, the stronger condition(r)=— gV(r) holds approxi-
mately [27-30, with c(r) denoting the direct correlation
function of the fluid[31]. This again gives rise to Ed8)

The thermodynamic relatiorp_L=(9(/302F)/(97 returns Eq.
(12).

above through the compressibility equation of s{&#). . We now examine whethe_r the density osqll_atlons oceur-
ring at highz elevations, which are clearly visible in Figs.

Using the dimensionless variables=z/c, p(X) 5 and Zb), can be obtained in the framework of the full
=p(2)0°, B=pV{0)/o®, and u=pu’ and introducing | DA, with the logarithmic term included, E¢(9). Though
Eq. (8) into Eq. (7), we obtain the equilibrium profile o |atter is an implicit equation fqx(x), we do not need to
through the equation: solve it in order to answer the question at hand. The key

_ _ _ observation is that Eq(9) delivers an explicit functional
In[po(X) ]+ Bpo(X) = p—ax. (9 form for theinversefunction:

For star functionalityf=39 we obtainB=250 and, forf X(p)=—a YInp+Bp—p). (15)
=32, B=204[see Eq.(2)]. Hence, the second term in the

left-hand side of Eq(9) above dominates over the logarith- If the LDA profile displayed oscillations, thes(x) would go

mic term for densitiesp(x)=0.10. As almost the entire through various maxima and minima and there should be
simulation density profile fulfills this condition, we finally several pointx,, where the derivati\/g’ (X, would vanish,
omit the logarithmic term from Eq(9) above and obtain with the implication that the derivative of the inverse func-
thereby ainear density profile: tion, x' (p), would divergeat the corresponding density val-

ues p,. From Eq. (15 above, we obtain x’(;)

0 for x<0, _ pah
_ =—a Y(p 1+B)<O0 for all 0< p<. The only divergence
po(X)= M aX for 0<x<gula, (10) of X' (p) occurs for the trivial limitp— 0 and corresponds to
B the exponential decay(x)=e™ **, valid for high elevations.
0 for ;/a<x. The LDA is incapable of reproducing this effect, a feat that,

in fact, could have been anticipated: these oscillations occur
at length scalegr, whereas the LDA is applicable when the

The chemical potentiak is now determined through the spatial inhomogeneity of the profile has a characteristic

normalization conditiony§*/dxpo(x) = 7o=, yielding length much larger than the latter. In Sec. Ill C, we resort to
a more powerful density-functional approximation in order
;: \/zaBZ (1) to reproduce this feature of the density profile.
and from Eq/(10) the final expression for the density profile: B. Phenomenological Landau theory
If one focuses close to the reentrant melting transition
(0 for  x<0, point, a phenomenological Landau-like approach can be
/2 ar 2B7 adopted to explore further scaling predictions for the crystal-
_ ———=x for 0<x<\/ —, lization transition. We study the situation sketched in Fig. 4
Po(X) = B B a (12 of a crystalline sheet of width intervening between two
2B fluid parts of the sedimentation profile. Let us define the
0 for T<X' excess grand canonical free energy per unit 2gdl) in
\

such a situation with respect to a situation where no crystal-

. . _ i lization takes place. This quantity is given by:
The prediction(12) is compared against the MC simula-

tion results in Figs. @) and 2b); theory and simulation are Sed)=2(H—-2(1=0), (16)

in excellent agreement. This linear dependence of the density

profile onzis the first scaling prediction we make for such with % (1) being the grand canonical free energy per unit area
systems. Moreover, by introducing Ed.0) into Eqg.(6), and  when a solid of thickneskis present. Evidently} (1=0) is
once more ignoring the logarithmic term, we find that thethe quantity given by Eq(13) above.

grand canonical free energy per unit abdr, u) is a power The excess grand canonical free enekgy per unit area
law of the chemical potential, namely: is comprised of three parts:
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) Y % Fig. 1. Performing a Landau expansion and dropping the

) Vo= temperature dependence one gets
: : fs(p)zfs(Pc)+As(fc_f)+f;(pc)(P_Pc)
1 1
\ : 1, )
; ! +5fs(pd(p=pe) ™t (19

R A=========- .
i Here, f(p) is the free energy per unit volume of the solid
| phase and\q is a constant governing the first leading term in
: . > an expansion arounfi=f.. Likewise, in the fluid phase one
a bz z has

FIG. 4. Sketch of the situation in which an intervening solid of fi(p)=Tfi(pd) +Alf— )+ (po)(p—po)
width | is nested between two fluids under the influence of a gravi-
tational field.

1
+ 51 (P (p=pd*+-, (20)
(1) The equilibrium surface tensiong, and y,: These
describe the additional free energy cost in creating the tweyith f(p.)="f(p.), fi(pd="{(po), but f2(p)>f{(po) in
solid-fluid interfaces at=z; andz=z,. general. Performing the inversion bfp) in order to get the
(2) A thermodynamic contribution that essentially de- density profile leads to a piecewise linear profile for the av-
pends on the arm number. fit-f. this contribution favors a  eraged density with two density jumpszt z, andz=z,, as

solid sheet. determined by the Maxwell construction, see Fig. 4.

(3) A free energy penalty due to an elastic distortion of
the solid in the external field. pw—ftl(pd)—mgz

——————+4p, for z;<z<z,
Hence: fe(pe)
D= gz (2D)
REREAREREA 4 : ff(,,ﬁ()c—) 2 +p. Otherwise.
f{Pc

We point out that such a separation into interfacial and bulk

terms is only possible when the thickness of the imerveni”Q?onsequently,
solid sheet is large enough, so that the latter can be treated gg§e gets

a bulk solid. Though this requirement is evidently satisfied

by inserting this into the free energy function

for small values ofa, the validity of our predictions is not 1 \m2g23
limited to a<1 values only; indeed, depending on the func- 2p=—a(f—fl +( — 12 (22)
tionality f, « values of order as large as ten can lead to fi(po)  fs(po)

intercalating solids comprising of as many as 20 crystalline ) - i
sheets, and hence, justifying their treatment as bulk phase§ote thata>0 in order to stabilize the solid fdr>f..
Let us discuss the different contributions in more detail. Third, the elastic part can be calculated by continuum
The surface tension will mainly control the relative orien- elastic d_|stprt|on theory of _the so[ld. For a different situation
tation of the solid with respect to thedirection. One expects ©f @ solid in an external field this has been formulated by
that a close-packed surface of the bcc séiid. a(100) or G_lttes and Schick33]. FoII(_meg these _|deas, we assume a
(110 orientatior] will have the smallest surface tension and Zindependent lateral straig) but consider az-dependent
will hence be the realized orientation. In fact, this is what wevertical straine, . By symmetry, e has to be zero for the
found in our simulation data presented in Figs. 2 and 3. Fofystal being stable &=z, i.e., for the crystal at the reen-
hard-sphere fcc solids the interfacial fluid-solid free energytrant melting point. Elasticity theory predicts fllas
has been calculated recently in equilibrium by computer

; : . . 1 (12
simulation[32]. Its order of magnitude is S olact= 5 7|/2dZCGf(Z), (23)
kgT . _ _ .
vi~c— (i=12), (18  whereC>0 is related to the elastic constants of the solid. As
g
€ %p—pc=Mgz (24)

whereo is a microscopic length scale.

The thermodynamic contribution could be calculatedye gbtain
within the LDA with f(p,T) taken from liquid-state theories
for the fluid and solid-cell theory for the crystal. Here, we S elas= C'1°m?g?, (25)
will simply focus on a Landau-type theory close to the reen-
trant melting point characterized by a critical star numbemwith another constant’. Equation(25) has a similar form
density p.=6/mo7y, and the critical arm numbef,, see as the second term of E(R2).
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In summary, the total grand canonical excess free energ) 28 . 5
IS @) ,//
o
S =—a(f—f)l+ba?3+ y,+ v,, (26) 26 1 ]
wherea,b>0. Moreover, we will usey= vy, + y, from now ,/O
on. A first-order phase transition takes place if the minimum 24 r o )
of 3, with respect td yields 3 .,=0. L
This determines the following resulting scaling relations: g/
(1) The realized crystalline thicknedsas obtained by 27 i
minimizing ., with respect td for fixed « andf scales as 53’/
T , 00 I
oC -,
. (27) o
18 1 1 1 1 1
(2) The phase transition to a crystalline sheet is first order. 2.6 2.8 3 3.2 3.4 3.6
It happens beyond a criticat-dependent arm numbei,; (-1
where 225
b ¢
foni— f o 7% (29 ®) 0
with a scaling exponent of 2/3. 175 9 1
(3) The widthl, corresponding to the transition scales as e
o 4
| oo Y30 23 Y 29 S 1257 o 1
f—f. e
/ﬂ/
The analysis presented here is general, the scaling predic Y]
tions derived are valid for any reentrant melting behavior in ST )
equilibrium (e.qg., laser-induced freeziri@4,35 or polydis-
perse systemg36]). Furthermore, all these relations can, in
principle, be checked by simulation. Relatig28) and(29), 25 ‘ ‘ ‘ ‘
however, require high-computational efforts. In order to 70.05 0.1 0.15 0.2 0.25
check on the scaling relatiof27), we measured the crystal 1/o

lengthl in MC simulations varyingx or f, while keeping the o . ) .
densityr fixed. The crystal length is determined by the range FIG. 5. Verification of the scaling behavior theoretically pre-

Az, where the order parametdt,(z) has values larger than dicted in Sec. llI B.in Eq(27), calculated by MC isimulations.. @)
0.8. The results are plotted in Fig. 5, showing excellent€ crystal lengti is plotted versus/f - f,, keepinga=6.0 fixed.
agreement with the scaling predictions ' In (b), | is plotted versus I for a fixed arm numbef=239. The

dashed lines are linear fits to the simulation res(dixcles.

C. Weighted density approximation of the density functional o )

In order to verify the density oscillations close to the P(Z):f p(z)o(|[r=r'[;p)dr’ (3D)
fluid-gas interface of the sedimentation profiles for large val-
ues ofa, we apply a simplified form of the HWDAhybrid  with a global densityp. The weighting functionw(r;p) is
weighted density approximationThe full HWDA was con-  fixed by a simple quadratic equation in Fourier spg&a:
structed by Leidl and Wagner [837]. Given an external field
d.,.(2), the free energy is a unique functional of the density 21 5(po) @(K; po) + pof§(po) @2(K; po) = — B~ (K; po).
profile p(z). Thus, the excess free energy per unit surface in (32
the HWDA framework is given by

The primes denote differentiations with respect to the density

p andc®(k;p,) is the Fourier transform of the direct cor-
relation function of the homogeneous fluid. A unique solu-
_ tion of w(k;po) is determined by the normalization(k
wherefqo(p) denotes the excess free energy per particle of a-g:p)=1, also ensuring the compressibility rule to be sat-
homogeneous liquid of densipy. The weighted density(z) isfied. We have solved the homogeneous problem with
follows from a convolution with the weighting function Ornstein-Zernike fluid integral equations using the Rogers-
o(r;p) Young closure[38]. Resulting correlation functions and

Fudol= | o) tl0(2)1cz (30
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structure factors are in very good agreement with MC simu- 4
lations of the bulk systerf26]. In difference to the complete

HWDA, where the global density is chosen to be a func-

tional of p(z), we keepf; fixed. This simplification is suffi-
cient to verify the observed oscillations, accompanied by the
advantage that the numerical effort is enormously reduced. 3
Best agreement with simulation results could be achieved
when choosing the global densityto be of the order of the
averaged density near the bottom wai 0. The tails of the
density profiles are nearly unaffected by the choice oA
similar approach is used in the SWOA9] for an inhomo-
geneous fluid in contact with a bulk fluid of densjty; there
p was chosen to bg, . 0
Applying the usual Euler-Lagrange minimization for the
Helmholtz free energy per unit ar¢’d p] with chemical po-

FIG. 6. Density profileg(z)o® for three different values of

tential p =10.0,20.0,30.0 and fixed arm numbg+32 and fixed density
SF 70%2=21.8 calculated with DFT(solid curve$ compared to MC
——=u— D2, (33 simulation results(dashed curves The slope of the curves in-

p(2) creases with increasing. The inset shows the bare DFT results for

and usingd,(z) = V() + az/ Bo, we obtain for the den- a better identification of the interface oscillations.
ex S! ’

sity profile p(2)
could be found at the tails of the density profiles. For hard-
B gexplcM(z[p])—azlo—BVsl2z)} z>0 sphere systems, on the other hand, no such density oscilla-
p(2)= 0 else. tions are present. This suprising fact might be attributed to
(39 the long-ranged tail in the interaction potential.

The fugacity¢ is determined by the normalization condition
&= T/fooodz eXp{C(l)(Z;[P])_a’Z/O'_Bsz(Z)}- C(l)(Z;[P]) is IV. CONCLUSIONS
the one-particle correlation function
In conclusion, we have presented results for systems ex-

— B leW(z[p])= 0Felp] hibiting reentrant melting in the bulk phase diagram, under
' op(2) gravitational influence. It was shown that a phase transition
occurs when the gravitational strengthis varied: Below a
:fo[;(Z)]+f dz’p(z’)f(’)[z(z’)] critical o* (f,7), intercalated crystallization occurs in the

sedimentation profiles of the observed star-polymer solu-
(35) tions, whereas fow> o* (f,7), we find monotonic sedimen-

tation profilesp(z). In MC computer simulations scaling re-
Equation(34) was solved for the profile by standard iterative lations for the crystallization, predicted in the framework of
techniques, see, e.g., R@A0]. The results for an arm num- a phenomenological theory, valid for all systems exhibiting
ber f=3270%=21.8 and three different values ef are reentrant melting in the bulk phase diagram, could be veri-
shown in Fig. 6, together with MC simulation data. The glo-fied. Using density-functional theory, density oscillations at
bal densityf) for all three profiles is fixed aﬁm3=1.8. The the fluid-gas boundary, observed in the MC simulations,
DFT results are in very good agreement with the simulatiorFould be reproduced. o
profiles. In particular, the interface oscillations with wave- [N principle, our results can be verified in surface-
length o also occur in the DFT. For=10.0, the lowestr sensitive scattering experiments or real-space imaging meth-
that is shown, the profile is nearly indistinguishable from©ds for colloidal suspensions. Unlike nonmonotonicities on
MC data far from the wall, while for increasee, o= 20.0 the liquid side of the gas-liquid equilibrium interfa¢see,

and «=30.0 the interface oscillations are underestimated irf-9- Rgf.[41]),_the density oscillations on top of the sedi-
our DFT approach. mentation profile are not affected by capillary wave fluctua-

These oscillations are not a specific feature of the staflons a_nd may thus be Ve”f'_ed in real samples. The interven-
polymers; we have also performed MC simulations using a"9 Solid sheet should be signalled by a Bragg-like peak in
repulsive Yukawa interaction of the form ;urface reflection measurements. .The strength pf the_ gravita-

tional parameterr can be tuned either by centrifugation or
V(r)=exp( — kr)/r, (36) by grafting long polymer chains on massive colloidal par-
ticles, thus creating starlike micelles, whose phase diagram is
corresponding to the part of the star polymer pair potentialdentical to that of star polymers but that possess a much

(2) valid for distances =o. Here, exactly the same behavior larger mass than the latter.

xo(|z=2'|;p).
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