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Sedimentation profiles of systems with reentrant melting behavior

J. Dzubiella,* H. M. Harreis, C. N. Likos, and H. Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 26 January 2001; published 20 June 2001!

We examine sedimentation density profiles of star polymer solutions as an example of colloidal systems in
sedimentation equilibrium that exhibit reentrant melting in their bulk phase diagram. Phase transitions between
a fluid and a fluid with an intercalated solid are observed below a critical gravitational strengtha* . Charac-
teristics of the two fluid-solid interfaces in the density profiles occurring in Monte Carlo simulations for
a,a* are in agreement with scaling laws put forth in the framework of a phenomenological theory. Further-
more, we detect density oscillations at the fluid-gas interface at high altitudes for high-gravitational fields,
which are verified with density-functional theory and should be observable in surface scattering experiments.
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I. INTRODUCTION

Colloidal particles in a suspension under gravitational
fluence show spatial inhomogeneities due to the symm
breaking induced by the gravitational field. The problem
sedimentation of particles in the presence of gravity has l
been of scientific interest. The simplest approximation is
one of noninteracting particles, valid in the limit of dilut
solutions. This approach leads to an exponential sedime
tion density profile, which was observed by Perrin for a c
culation of Boltzmann’s constant in 1910@1#. Taking into
account particle interactions at higher concentrations
yield corrections to the exponential density profile. For ve
small gravitational strength, a local-density approximat
~LDA ! of density-functional theory~DFT! is justified @2,3#.
In this case, there is a one-to-one correspondence betw
the sedimentation density profile and the isothermal equa
of state. This fact was exploited to extract the hard-sph
equation of state experimentally by investigating sterica
stabilized colloids @4#. Furthermore, within the LDA, a
change in the heightz corresponds to a local change of th
chemical potentialm of the bulk system. This implies that, i
the limit of small gravity, the phase behavior becomes v
ible as a function of heightz, a feature that has also bee
exploited to estimate the hard-sphere freezing transition@4#.
Surprisingly, comparison with Monte Carlo~MC! simula-
tions show that the LDA is even reliable for relatively stro
inhomogeneities or gravitational strengths@2#. This was fur-
ther confirmed by comparing LDA against the exac
soluble hard rod model in one spatial dimension. While
LDA yields a monotonic decaying density profiler(z), a
layering shows up near the hard wall of the container botto
Even crystallization can be induced by the bottom wall@5#.
As shown recently@6#, details of this surface-induced crys
tallization may be significantly influenced by a periodic w
pattern. Indeed, pure colloidal crystals can be grown fr
sedimentation on a patterned substrate@7–9#. In this case, the
gravitational field acts as an external force enforcing a
accelerating heterogenous nucleation and growth. Other
cinating phenomena in a gravitational field relevant for c
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loidal suspensions are phase transitions such as wetting@10#,
surface melting@11#, as well as dynamical effects as shoc
like fronts @12#, metastable phase formation@13#, long-range
velocity correlations@14#, stratification @15#, and crystal
growth @16#.

While the equilibrium sedimentation of hard-sphere s
pensions is well understood@2,4,5,17,18#, charged suspen
sions are much more subtle as they reveal an apparent
that is smaller than the bare mass at least for intermed
heights @4,19–21#. In this paper, we study a third kind o
effective interaction between colloids, namely a very s
core as realized for star polymer solutions@22#. The qualita-
tive new feature of those solutions as compared to the tr
tional hard-sphere and Yukawa interactions is that th
phase diagram exhibits areentrant melting behaviorfor in-
creasing density@23#. In fact, our analysis holds for any sys
tem with a reentrant melting behavior, but we will main
focus explicitly on star polymers. Star polymers consist of
linear polymer arms attached to a central common core.
complete bulk phase diagram for star polymers in a go
solvent was calculated in Ref.@23# and exhibits several un
usual solid lattices as well as reentrant melting. As will
discussed in detail in the following sections, due to the re
trant melting behavior, unusual density profiles, featuring
teresting effects, arise and a wealth of scaling laws can
established.

The paper is organized as follows: In Sec. II, results
computer simulations of a system of star polymers, intera
ing by means of an ultrasoft pair potential@24# are presented
In Sec. III, we present a phenomenological theory giving
account of the sedimentation profiles observed in the co
puter simulations. Scaling laws are put forth. Also in Sec.
density-functional theory in a simplified hybrid weighte
density approximation~HWDA! is used to reproduce densit
oscillations at the fluid-gas interface found in the simulati
data. Concluding remarks are contained in Sec. IV.

II. COMPUTER SIMULATION

We performed canonical MC computer simulations kee
ing particle numberN, volume V, and temperatureT con-
stant. We used a simulation box with squared perio
boundary conditions inx,y direction and semi-infinite geom
©2001 The American Physical Society05-1
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etry in z direction where the particles were confined only
the gravitational field forz.0. The bottom wall atz50 was
hard and interacting with the star polymers by means of
effective star polymer-wall potential that is derived from t
effective star polymer hard-sphere interaction in the limit
a sphere with zero curvature. The calculation was perform
in Ref. @25#. It is of the following form:

bVsw~z!5L f 3/2

35
` z,0

j22 lnS 2z

s D2S 4z2

s2
21D S j12

1

2D z,
s

2

j2~12erf~2kz!!/@12erf~ks!# else.

~1!

With z we denote the distance from the center of one s
polymer to the surface of the flat wall.s defines the so-
called corona diameter of a star polymer, which is related
its diameter of gyrationsg through s.0.66sg , see Ref.
@25#. The constants areL50.24, ks50.84, j151/(1
12k2s2), j25Apj1 /ks exp(k2s2)@12erf(ks)#, and the
inverse thermal energyb51/kBT. We emphasize that th
range of the star-wall interaction is of the order of one or t
corona diameters, so that the behavior of the sedimenta
profiles for larger distances is not influenced. The star po
mer pair potential is ultrasoft and is described by the follo
ing equation@24#:

bVss~r !5
5

18
f 3/25 2 lnS r

s D1
1

11Af /2
r ,s

s/r

11Af /2
expF2

Af

2s
~r 2s!G else,

~2!

with center-to-center distancer. Both interactions are purely
entropic, hence they scale linearly with temperature. Pr
ous work@23# showed that a system of star polymers int
acting by means of the potential~2! possess a very rich an
interesting bulk phase diagram, see Fig. 1, exhibiting re
trant melting and reentrant freezing transitions for arm nu
bers f c& f &54, with the critical arm numberf c534. As we
will discuss in more detail below, it is the reentrant melti
that makes this type of system appropriate for the anal
presented in this article. The suspending liquid is assume
be incompressible. Furthermore, we treat the solvent to
continuous, neglecting possible effects of the discretenes
the solvent particles. Given the size of the colloidal partic
under observation, the star polymers, this is a reason
assumption. In the simulation, the initial configuration of t
system was chosen to be a body-centered cubic~bcc! solid to
facilitate equilibration. Its lattice constanta was determined
from a bulk system with a packing fractionh5p/6rs3

.0.5 lying in the bcc regime in the bulk phase diagram,
Fig. 1. The lateral box dimensions were chosen to be m
tiples of the lattice constanta. The total number of particles
was then fixed by prescribing a certain value of the therm
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dynamic variablet, giving the number density per unit su
face. The density profiler(z) is normalized as

t5E
0

`

r~z!dz. ~3!

ts2 is the number of particles piled up over the areas2 of
the bottom wall. Typical system sizes wereN52000 par-
ticles and the Monte Carlo runs were extended overNMC
'500 000 cycles, each cycle comprising one trial move
each of theN particles. Besides the aforementioned therm
dynamic variablet, two further parameters characterize t
state of the system: First, the arm numberf of the star poly-
mers, being the number of polymer chains grafted on
central core. Second, the dimensionless gravitational stre
~or Peclet number!

a5
mgs

kBT
, ~4!

which describes the ratio of the potential energy gain to
thermal energykBT for a particle of massm, displaced bys
in height in an external field with accelerationg. The three
parametersf, t, and a were varied over a broad range o
values. The particles were moved by employing the stand
Metropolis algorithm.

In Fig. 2, we show results for different gravitation
strengthsa, while ts2548.87 andf 539 are fixed. Thef
539 star polymer system displays reentrant melting in
fluid→bcc→fluid sequence, as seen along the arrow in F
1. The gravitational field forces the local densitys3r(z) to
take values that scan the range froms3r(z)50 up to high
values, s3r(z)>3. Thus, the local density ‘‘crosse
through’’ the range of the phase diagram where the sys

FIG. 1. Bulk phase diagram of star polymers interacting w
potential~2!, calculated in Ref.@23#. Arm numberf is plotted versus
packing fractionh. The squares indicate the phase boundaries; s
lines are a guide to the eye. The black cross denotes the point
critical arm numberf c.34 and corresponding densityhc.0.43.
The system is always fluid for arm numbers smaller than the crit
arm numberf c and shows reentrant melting behavior for arm nu
bers f c, f &54. The arrow indicates a path through the phase d
gram that is equivalent with a change in the altitudez within the
LDA. The four observed solid phases are body-centered cu
~bcc!, face-centered cubic~fcc!, body-centered orthogonal~bco!,
and diamond~diam.!.
5-2
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SEDIMENTATION PROFILES OF SYSTEMS WITH . . . PHYSICAL REVIEW E64 011405
displays a bulk bcc phase. It it intuitively expected that t
system will then feature a solid regime~for intermediate den-
sities! intercalated between two fluid regimes, at low a
high densities. We have found that this is indeed what h
pens butprovided that the gravitational strength doesnot
exceed a critical valuea* , as we discuss below.

Let us start from the case where no solid phase appe
For a.a* @Figs. 2~a! and 2~b!#, we obtain density profiles
r(z) that show three distinct features: First, there is layer
on the wall due to packing effects, typically extending ov
several layers. Asz increases, a fluid regime with densi
decaying as a linear function of altitudez can be distin-

FIG. 2. Sedimentation profiles of star polymers for an arm nu
ber f 539 and a densityts2548.87. The gravitational strengtha is
decreased from~a! to ~f! with ~a! a530.0, ~b! a517.0, ~c! a
516.0, ~d! a58.0, ~e! a56.0, and~f! a54.0. In plots~c!–~f! the
order parameterC4 is also shown~dashed line! using the samey
scale as the profiles. In~a! and~b!, a straight line whose equation i
derived within the LDA@see Eq.~12!# is superimposed on the plot
~dotted line!.
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guished. At some height@z.25s in ~a!# the density rapidly
decays to zero. At this strong inhomogeneity, oscillations
density with wavelengths can be distinguished in the sed
mentation profile, which is smooth elsewhere in the line
regime. The linear dependence of the density profile onz,
can be understood in terms of a local-density functio
mean-field theory, as will be shown in Sec. III A; the corr
sponding results from this theory are shown in Figs. 2~a! and
2~b! with dotted lines. The density oscillations observed
the simulations were reproducible in the framework
density-functional theory using a simplified form of th
HWDA, as will be discussed in further detail in Sec. III C

By lowering the gravitational strengtha further, a critical
strengtha* in the range 16.0,a* ,17.0 is discovered. Be
low a* , the density profiles qualitatively change and exhi
a new feature. Strong density oscillations appear, a clea
dication for a crystalline phase. They extend over 10 to
star diameters, equivalent to several crystalline layers.
length of the crystal grows, asa decreases. A typical simu
lation snapshot is shown in Fig. 3 next to the correspond
equilibrium density profile. Here, the well-ordered crys
phase in the middle of the simulation box (20s&z&30s) is
clearly visible.

As an additional check for crystalline order, we calcula
the local-order-parameterC4 that checks for fourfold sym-
metry in two dimensions around a given particle. It is defin
by

C4~z!5U K 1

4Nl
(
j 51

Nl

(̂
k&

e4if jkL U, ~5!

where thek sum includes the four nearest neighbors of t
given particle and thej sum extends overNl particles in the
corresponding layer. A layer is defined by a slab of thickn
d.0.2 a, centered around the given particle at elevationz,
which is motivated by the ‘‘Lindemann melting rule,’’ as
suming a maximum particle displacement of approximat
10% around the equilibrium position in a possible crys
regime. The angular brackets indicate a canonical ensem
average.f jk is the polar angle of the interparticle distan
vector with respect to a fixed reference frame. For ideal fo
fold symmetry, i.e., for a particle contained in a bcc-so
layer, C451. Due to thermal motion, small defects of th
perfect crystalline symmetry arise and usually values ofC4
.0.8 @6# are taken to be conclusive evidence for a crystall
phase with fourfold-in-layer-symmetry. As can be seen
Figs. 2~c!–2~f!, our simulation data do indeed show valu
up toC4'0.95 in the region of the density profiler(z) that
we already identified to be solid due to the pronounced d
sity oscillations.

Comparing the interval of the packing fraction in whic
crystallization occurs to the bulk phase diagram in Fig. 1,
may thus conclude that the intercalated solid regime i
manifestation of the reentrant melting in the bulk phase d
gram, mapped onto thez axis in a system under gravitationa
influence. The absence of freezing for strong gravitatio
fields (a.a* ) can now be at least qualitatively understoo
for high values ofa, the density profiles grow too fast asz

-
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approaches the wall, so that the mapping onto thez axis
results into a domain that is too narrow to sustain crystal
order. In fact, as we will show in detail in Sec. III B,
minimal, nonvanishing thickness of the crystalline layer
necessary so that the latter can be stably ‘‘nested’’ betw
the two fluid phases.

FIG. 3. Snapshot from MC simulation~right! shown with the
corresponding equilibrium density profile~left!. The star polymers
are rendered as spheres with diameters. The parameters are:f
539, a55.0, ts2542.1.
01140
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III. THEORY

A. Density-functional theory in local-density
approximation „LDA …

In order to predict scaling relations characterizing cryst
lization in sedimentation profiles of star polymer solutio
we apply density-functional theory within the framework
the local-density approximation~LDA !. The latter is a reli-
able theoretical tool in cases where the density profile of
system varies slowly withz, so that it can be considered a
staying essentially constant at length scales set by the m
scopic natural length of the system (s in this case!. As can
be seen in Figs. 2~a! and 2~b!, this is indeed the case if we
discard the strong oscillations close to the wall~the layering
effect!. As the range of these oscillations is much shor
than the range of the density profile itself, the bulk of the fr
energy of the system resides in the smooth ‘‘ramplike’’ p
of the density profile and the use of the LDA is justifie
Accordingly, we will omit the star-wall potential from ou
considerations in this subsection and consider only the
fects of the external gravitational fieldFext(z)5mgz.

We work in the grand canonical ensemble and introdu
the chemical potentialm and a variational grand potential pe
unit area,S̃„T,m;@r(z)#… which is a functional of the density
profile. Introducing the ideal and excess per unit area con
butions to the intrinsic Helmholtz free energy of the syste
F id@r(z)# and Fex@r(z)#, respectively, we find that in the
LDA, the expression forS̃„T,m;@r(z)#… reads as

S̃„T,m,@r~z!#…5F id@r~z!#1Fex@r~z!#

1E dzFext~z!r~z!2mE dzr~z!

5kBTE
0

`

dzr~z!@ ln$r~z!l3%21#

1E
0

`

dz@ f „r~z!…1~mgz2m!r~z!#,

~6!

where l5Ah2/2pmkBT is the thermal de Broglie wave
length and f „r(z)… is the Helmholtz free energy per un
volume of the bulk fluid. The minimization ofS̃ with respect
to r(z) yields the equilibrium profiler0(z); the value of the
functional at equilibrium,S̃„T,m,@r0(z)#… is then the grand
canonical free energy per unit area,S(T,m) of the system.
SettingdS̃„T,m,@r(z)#…/dr(z)ur0(z)50 in Eq. ~6!, leads to

kBT ln@r0~z!s3#1 f 8@r0~z!#5m82mgz, ~7!

where f 8(x) denotes the derivative off (x) and m85m
23 ln(l/s) is a shifted chemical potential.

Due to the ultrasoft character of the logarithmic-Yukaw
star-star interactionVss(r ), the star polymer system belong
to the class ofmean-field fluids@26–30#, for which the ex-
cess free energy density is a quadratic function ofr, namely:
5-4
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f ~r!>
r2

2
4pE

0

`

dr r 2Vss~r !5:
V̂ss~0!r2

2
, ~8!

with the Fourier transformV̂ss(k) of the pair potential. This
property is valid for high-density fluids provided their pa
potential V(r ) is only slowly diverging at the origin and
decays fast enough to zero asr→`, so that it is integrable
For the more restrictive case of a nondiverging potentia
r 50, the stronger conditionc(r )52bV(r ) holds approxi-
mately @27–30#, with c(r ) denoting the direct correlation
function of the fluid@31#. This again gives rise to Eq.~8!
above through the compressibility equation of state@31#.

Using the dimensionless variablesx[z/s, r̄(x)
[r(z)s3, B[bV̂ss(0)/s3, and m̄[bm8 and introducing
Eq. ~8! into Eq. ~7!, we obtain the equilibrium profile
through the equation:

ln@ r̄0~x!#1Br̄0~x!5m̄2ax. ~9!

For star functionalityf 539 we obtainB>250 and, for f
532, B>204 @see Eq.~2!#. Hence, the second term in th
left-hand side of Eq.~9! above dominates over the logarith
mic term for densitiesr̄(x)*0.10. As almost the entire
simulation density profile fulfills this condition, we finall
omit the logarithmic term from Eq.~9! above and obtain
thereby alinear density profile:

r̄0~x!55
0 for x,0,

m̄2ax

B
for 0,x,m̄/a,

0 for m̄/a,x.

~10!

The chemical potentialm̄ is now determined through th
normalization condition*0

m̄a/dxr̄0(x)5ts2[t̄, yielding

m̄5A2aBt̄, ~11!

and from Eq.~10! the final expression for the density profil

r̄0~x!55
0 for x,0,

A2at̄

B
2

a

B
x for 0,x,A2Bt̄

a
,

0 for A2Bt̄

a
,x.

~12!

The prediction~12! is compared against the MC simula
tion results in Figs. 2~a! and 2~b!; theory and simulation are
in excellent agreement. This linear dependence of the den
profile onz is the first scaling prediction we make for suc
systems. Moreover, by introducing Eq.~10! into Eq.~6!, and
once more ignoring the logarithmic term, we find that t
grand canonical free energy per unit areaS(T,m) is a power
law of the chemical potential, namely:
01140
t
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bs2S~T,m̄ !52
m̄3

6aB
. ~13!

Accordingly, the Helmholtz free energy per unit are
bs2F(T,t̄)5bs2S(T,m̄)1m̄t̄ obeys the scaling law

bs2F~T,t̄ !5
2

3
A2aBt̄3/2. ~14!

The thermodynamic relationm̄5](bs2F)/]t̄ returns Eq.
~11!.

We now examine whether the density oscillations occ
ring at highz elevations, which are clearly visible in Figs
2~a! and 2~b!, can be obtained in the framework of the fu
LDA, with the logarithmic term included, Eq.~9!. Though
the latter is an implicit equation forr̄(x), we do not need to
solve it in order to answer the question at hand. The k
observation is that Eq.~9! delivers an explicit functional
form for the inversefunction:

x~ r̄ !52a21~ ln r̄1Br̄2m̄ !. ~15!

If the LDA profile displayed oscillations, thenr̄(x) would go
through various maxima and minima and there should
several pointsxm where the derivativer̄8(xm) would vanish,
with the implication that the derivative of the inverse fun
tion, x8( r̄m), woulddivergeat the corresponding density va
ues r̄m. From Eq. ~15! above, we obtain x8( r̄)
52a21( r̄211B),0 for all 0, r̄,`. The only divergence
of x8( r̄) occurs for the trivial limitr̄→0 and corresponds to
the exponential decayr̄(x)}e2ax, valid for high elevations.
The LDA is incapable of reproducing this effect, a feat th
in fact, could have been anticipated: these oscillations oc
at length scaless, whereas the LDA is applicable when th
spatial inhomogeneity of the profile has a characteris
length much larger than the latter. In Sec. III C, we resort
a more powerful density-functional approximation in ord
to reproduce this feature of the density profile.

B. Phenomenological Landau theory

If one focuses close to the reentrant melting transit
point, a phenomenological Landau-like approach can
adopted to explore further scaling predictions for the crys
lization transition. We study the situation sketched in Fig
of a crystalline sheet of widthl intervening between two
fluid parts of the sedimentation profile. Let us define t
excess grand canonical free energy per unit areaSex( l ) in
such a situation with respect to a situation where no crys
lization takes place. This quantity is given by:

Sex~ l !5S~ l !2S~ l 50!, ~16!

with S( l ) being the grand canonical free energy per unit a
when a solid of thicknessl is present. Evidently,S( l 50) is
the quantity given by Eq.~13! above.

The excess grand canonical free energySex per unit area
is comprised of three parts:
5-5
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~1! The equilibrium surface tensionsg1 and g2: These
describe the additional free energy cost in creating the
solid-fluid interfaces atz5z1 andz5z2.

~2! A thermodynamic contribution that essentially d
pends on the arm number. Iff . f c this contribution favors a
solid sheet.

~3! A free energy penalty due to an elastic distortion
the solid in the external field.

Hence:

Sex5g11g21STD1Selast. ~17!

We point out that such a separation into interfacial and b
terms is only possible when the thickness of the interven
solid sheet is large enough, so that the latter can be treate
a bulk solid. Though this requirement is evidently satisfi
for small values ofa, the validity of our predictions is no
limited to a!1 values only; indeed, depending on the fun
tionality f, a values of order as large as ten can lead
intercalating solids comprising of as many as 20 crystall
sheets, and hence, justifying their treatment as bulk pha
Let us discuss the different contributions in more detail.

The surface tension will mainly control the relative orie
tation of the solid with respect to thez direction. One expects
that a close-packed surface of the bcc solid@i.e. a ~100! or
~110! orientation# will have the smallest surface tension a
will hence be the realized orientation. In fact, this is what
found in our simulation data presented in Figs. 2 and 3.
hard-sphere fcc solids the interfacial fluid-solid free ene
has been calculated recently in equilibrium by compu
simulation@32#. Its order of magnitude is

g i'
kBT

s2
, ~ i 51,2!, ~18!

wheres is a microscopic length scale.
The thermodynamic contribution could be calculat

within the LDA with f (r,T) taken from liquid-state theorie
for the fluid and solid-cell theory for the crystal. Here, w
will simply focus on a Landau-type theory close to the ree
trant melting point characterized by a critical star numb
density rc56/ps3hc and the critical arm numberf c , see

FIG. 4. Sketch of the situation in which an intervening solid
width l is nested between two fluids under the influence of a gra
tational field.
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Fig. 1. Performing a Landau expansion and dropping
temperature dependence one gets

f s~r!5 f s~rc!1As~ f c2 f !1 f s8~rc!~r2rc!

1
1

2
f s9~rc!~r2rc!

21¯ . ~19!

Here, f s(r) is the free energy per unit volume of the sol
phase andAs is a constant governing the first leading term
an expansion aroundf 5 f c . Likewise, in the fluid phase one
has

f f~r!5 f f~rc!1Af~ f c2 f !1 f f8~rc!~r2rc!

1
1

2
f f9~rc!~r2rc!

21¯, ~20!

with f s(rc)5 f f(rc), f s8(rc)5 f f8(rc), but f s9(rc). f f9(rc) in
general. Performing the inversion off (r) in order to get the
density profile leads to a piecewise linear profile for the a
eraged density with two density jumps atz5z1 andz5z2, as
determined by the Maxwell construction, see Fig. 4.

r~z!55
m2 f s8~rc!2mgz

f s9~rc!
1rc for z1,z,z2

m2 f f8~rc!2mgz

f f9~rc!
1rc otherwise.

Consequently, by inserting this into the free energy funct
one gets

STD52a~ f 2 f c!l 1S 1

f f9~rc!
2

1

f s9~rc!
D m2g2l 3

12
. ~22!

Note thata.0 in order to stabilize the solid forf . f c .
Third, the elastic part can be calculated by continuu

elastic distortion theory of the solid. For a different situati
of a solid in an external field this has been formulated
Gittes and Schick@33#. Following these ideas, we assume
z-independent lateral straine i but consider az-dependent
vertical straine' . By symmetry,e i has to be zero for the
crystal being stable atz5z0, i.e., for the crystal at the reen
trant melting point. Elasticity theory predicts forSelast

Selast.
1

2E2 l /2

l /2

dzCe'
2 ~z!, ~23!

whereC.0 is related to the elastic constants of the solid.

e'}r2rc}mgz, ~24!

we obtain

Selast5C8l 3m2g2, ~25!

with another constantC8. Equation~25! has a similar form
as the second term of Eq.~22!.

i-
5-6
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In summary, the total grand canonical excess free ene
is

Sex~ l !52a~ f 2 f c!l 1ba2l 31g11g2 , ~26!

wherea,b.0. Moreover, we will useg5g11g2 from now
on. A first-order phase transition takes place if the minim
of Sex with respect tol yields Sex50.

This determines the following resulting scaling relation
~1! The realized crystalline thicknessl as obtained by

minimizing Sex with respect tol for fixed a and f scales as

l}
Af 2 f c

a
. ~27!

~2! The phase transition to a crystalline sheet is first ord
It happens beyond a criticala-dependent arm numberf crit
where

f crit2 f c}g2/3a2/3, ~28!

with a scaling exponent of 2/3.
~3! The width l 0 corresponding to the transition scales

l 0}g1/3a22/3}
g

f 2 f c
. ~29!

The analysis presented here is general, the scaling pre
tions derived are valid for any reentrant melting behavior
equilibrium ~e.g., laser-induced freezing@34,35# or polydis-
perse systems@36#!. Furthermore, all these relations can,
principle, be checked by simulation. Relations~28! and~29!,
however, require high-computational efforts. In order
check on the scaling relation~27!, we measured the crysta
lengthl in MC simulations varyinga or f, while keeping the
densityt fixed. The crystal length is determined by the ran
Dz, where the order parameterC4(z) has values larger tha
0.8. The results are plotted in Fig. 5, showing excell
agreement with the scaling predictions.

C. Weighted density approximation of the density functional

In order to verify the density oscillations close to th
fluid-gas interface of the sedimentation profiles for large v
ues ofa, we apply a simplified form of the HWDA~hybrid
weighted density approximation!. The full HWDA was con-
structed by Leidl and Wagner in@37#. Given an external field
Fext(z), the free energy is a unique functional of the dens
profile r(z). Thus, the excess free energy per unit surface
the HWDA framework is given by

Fexc@r#5E
0

`

r~z! f 0@ r̄~z!#dz, ~30!

where f 0(r) denotes the excess free energy per particle o
homogeneous liquid of densityr. The weighted densityr̄(z)
follows from a convolution with the weighting functio
v(r ;r)
01140
gy

:

r.

ic-

e

t

l-

y
n

a

r̄~z!5E r~z8!v~ ur2r 8u; r̂ !dr 8 ~31!

with a global densityr̂. The weighting functionv(r ;r) is
fixed by a simple quadratic equation in Fourier space@37#:

2 f 08~r0!ṽ~k;r0!1r0f 09~r0!ṽ2~k;r0!52b21c̃(2)~k;r0!.
~32!

The primes denote differentiations with respect to the den
r and c̃(2)(k;r0) is the Fourier transform of the direct co
relation function of the homogeneous fluid. A unique so
tion of ṽ(k;r0) is determined by the normalizationṽ(k
50;r0)51, also ensuring the compressibility rule to be s
isfied. We have solved the homogeneous problem w
Ornstein-Zernike fluid integral equations using the Roge
Young closure @38#. Resulting correlation functions an

FIG. 5. Verification of the scaling behavior theoretically pr
dicted in Sec. III B in Eq.~27!, calculated by MC simulations. In~a!
the crystal lengthl is plotted versusAf 2 f c, keepinga56.0 fixed.
In ~b!, l is plotted versus 1/a for a fixed arm numberf 539. The
dashed lines are linear fits to the simulation results~circles!.
5-7
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structure factors are in very good agreement with MC sim
lations of the bulk system@26#. In difference to the complete
HWDA, where the global densityr̂ is chosen to be a func
tional of r(z), we keepr̂ fixed. This simplification is suffi-
cient to verify the observed oscillations, accompanied by
advantage that the numerical effort is enormously reduc
Best agreement with simulation results could be achie
when choosing the global densityr̂ to be of the order of the
averaged density near the bottom wallz50. The tails of the
density profiles are nearly unaffected by the choice ofr̂. A
similar approach is used in the SWDA@39# for an inhomo-
geneous fluid in contact with a bulk fluid of densityrb ; there
r̂ was chosen to berb .

Applying the usual Euler-Lagrange minimization for th
Helmholtz free energy per unit areaF@r# with chemical po-
tential m

dF
dr~z!

5m2Fext~z!, ~33!

and usingFext(z)5Vsw(z)1az/bs, we obtain for the den-
sity profile r(z)

r~z!5H j exp$c(1)~z;@r#!2az/s2bVsw~z!% z.0

0 else.
~34!

The fugacityj is determined by the normalization conditio
j5t/*0

`dz exp$c(1)(z;@r#)2az/s2bVsw(z)%. c(1)(z;@r#) is
the one-particle correlation function

2b21c(1)~z;@r#!5
dFex@r#

dr~z!

5 f 0@ r̄~z!#1E dz8r~z8! f 08@ r̄~z8!#

3v~ uz2z8u; r̂ !. ~35!

Equation~34! was solved for the profile by standard iterati
techniques, see, e.g., Ref.@40#. The results for an arm num
ber f 532,ts2521.8 and three different values ofa are
shown in Fig. 6, together with MC simulation data. The g
bal densityr̂ for all three profiles is fixed atr̂s351.8. The
DFT results are in very good agreement with the simulat
profiles. In particular, the interface oscillations with wav
lengths also occur in the DFT. Fora510.0, the lowesta
that is shown, the profile is nearly indistinguishable fro
MC data far from the wall, while for increaseda, a520.0
anda530.0 the interface oscillations are underestimated
our DFT approach.

These oscillations are not a specific feature of the
polymers; we have also performed MC simulations usin
repulsive Yukawa interaction of the form

V~r !}exp~2kr !/r , ~36!

corresponding to the part of the star polymer pair poten
~2! valid for distancesr>s. Here, exactly the same behavi
01140
-

e
d.
d

-

n

n

r
a

l

could be found at the tails of the density profiles. For ha
sphere systems, on the other hand, no such density os
tions are present. This suprising fact might be attributed
the long-ranged tail in the interaction potential.

IV. CONCLUSIONS

In conclusion, we have presented results for systems
hibiting reentrant melting in the bulk phase diagram, und
gravitational influence. It was shown that a phase transit
occurs when the gravitational strengtha is varied: Below a
critical a* ( f ,t), intercalated crystallization occurs in th
sedimentation profiles of the observed star-polymer so
tions, whereas fora.a* ( f ,t), we find monotonic sedimen
tation profilesr(z). In MC computer simulations scaling re
lations for the crystallization, predicted in the framework
a phenomenological theory, valid for all systems exhibiti
reentrant melting in the bulk phase diagram, could be v
fied. Using density-functional theory, density oscillations
the fluid-gas boundary, observed in the MC simulatio
could be reproduced.

In principle, our results can be verified in surfac
sensitive scattering experiments or real-space imaging m
ods for colloidal suspensions. Unlike nonmonotonicities
the liquid side of the gas-liquid equilibrium interface~see,
e.g., Ref.@41#!, the density oscillations on top of the sed
mentation profile are not affected by capillary wave fluctu
tions and may thus be verified in real samples. The interv
ing solid sheet should be signalled by a Bragg-like peak
surface reflection measurements. The strength of the gra
tional parametera can be tuned either by centrifugation o
by grafting long polymer chains on massive colloidal pa
ticles, thus creating starlike micelles, whose phase diagra
identical to that of star polymers but that possess a m
larger mass than the latter.

FIG. 6. Density profilesr(z)s3 for three different values ofa
510.0,20.0,30.0 and fixed arm numberf 532 and fixed density
ts2521.8 calculated with DFT~solid curves! compared to MC
simulation results~dashed curves!. The slope of the curves in
creases with increasinga. The inset shows the bare DFT results f
a better identification of the interface oscillations.
5-8



A.
an

p-

the

SEDIMENTATION PROFILES OF SYSTEMS WITH . . . PHYSICAL REVIEW E64 011405
ACKNOWLEDGMENTS

The authors wish to thank M. Heni, M. Schmidt, and
Esztermann for stimulating discussions and A. Eszterm
v.

ys

d

01140
n

for a critical reading of the manuscript. This work was su

ported by the Deutsche Forschungsgemeinschaft within

SFB 237.
-

H.

s.

n-

tt.
@1# J. Perrin, J. Phys.9, 5 ~1910!.
@2# T. Biben, J.-P. Hansen, and J.-L. Barrat, J. Chem. Phys.98,

7330 ~1993!.
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